

Cryogenic Motion Control

Chad Joshi Energen, Inc.

Definition

- Actuator -transforms energy into a limited range of motion
 - > Linear
 - ▶ Rotary
 - >Active device (uses power)

Applications

- Restraint, release and deployment
- Positioning
- Steering, pointing

Requirements

- ♣ Operating life
- Power
- Pointing accuracy
- ♣ Slew/scan rate
- Operating speed
- Deployment time
- ♣ Retractibility

Systemic Constraints

- ♣ Weight: negligible
- **♣** Stiffness: infinite
- ♣ Power: zero
- ♣ Envelope: miniscule
- ♣ Temp range: 0 MP
- Vacuum compatible
- Outgassing: none
- ♣ Shock and vibration

Does not exist!

Types of Actuators

- **Lectromagnetic**
 - > Solenoid
 - Voice Coil
 - > Motors
- **Electrostatic**
- **♣** Smart Materials
 - > Piezoelectric
 - Magnetostrictive
 - > Shape Memory
 - > FSMA

The Central Challenge

- ♣ Prevent freeze up
- Ensure smooth operation
- ♣ Relative motion
 - > Sliding
 - > Rolling
 - > Flexing

Electromagnetic - Solenoids

- ♣ Pull only
- Force inverse with gap
- ♣ Power required to maintain force

Electromagnetic - Voice Coils

- Constant force devices
 - > I x B
- Permanent magnets
- Force independent of position

Flexures

- Springs with high lateral stiffness
- **Low friction**
- **Low stiction**
- Eliminate hysteresis in mechanical joint

Types of motors

Direct current		Alternating Current		
Continuous	Incremental	Single Phase	Polyphase	
Wound field: series, shunt, compound wound	Stepper motors: PM, variable reluctance	Induction: split phase, Capacitor start, Capacitor run Shaded pole Repulsion start	Induction: squirrel cage, wound rotor	
Permanent magnet: PM torque, printed circuits, ironless Brushless w/ and w/o iron		Synchronous: hysteresis, reluctance	Synchronous	

Motor applications

Electromagnetic Performance	Mechanical Performance	Application	Requirements	Motor Type
High	High	Reaction wheels, control moment Gyros, torque motors, payload pointing	High torque, bandwidth and large motions	Brushless DC, ironless brushless DC
High	Low	Low-duty-cycle servomotors (launch vehicles and some payload drives)	High torque and bandwidth, low motion or duty cycle	Brushless DC, ironless brushless DC
Low	High	Spin motors for gyros, momentum wheels, scanners	Large range of motion, low torque and bandwidth	Induction, stepper motors or brushless DC
Low	Low	Deployment mechanisms, slow drives	Slow or low- duty-cycle motion, low bandwidth	Stepper motors and DC motors (brushed and brushless)

Cryogenic challenges

- Thermal contraction
- Magnet materials (ferro- and permanent)
- Bearings & Iubrication
- Electrical dissipation

Thermal contraction

Permanent Magnet Materials

♣ NdFeB

Highest energy product

♣ SmCo

Best suited for cryogenic applications

AINiCo

> inexpensive

4 Ceramic

> Brittle

Bearings & Lubrication

- Most bearing failures are due to inadequate lubrication supply rather than base materials
- Hydrocarbon lubricants
 - > Freeze out
- Solid (Dry) lubricants
 - >TMD
 - ➤ Graphite
 - **PTFE**

Electrical Properties

- Electrical resistivity decreases at lower temperatures
- ♣ Limited by
 - impurities
 - > crystalline defects
 - grain boundaries
- Superconductors

$$\rho \kappa = LT$$

Superconductors

- ♣ Metallic
 - > NbTi
- **♣** Intermetallic
 - $> Nb_3Sn, Mg_2B$
- **Lecande** Ceramic
 - > YBCO, BSCCO, TBCCO

RT

Piezoelectric Materials

- Permanently polarized materials
- Electric field causes distortion of crystal lattice
- Widely used for sensors and actuators

Piezoelectric RT Performance

Devices

Cryogenic Performance

Magnetostrictive Materials

- Elongates in a magnetic field
- Rotation of magnetic domains
- Repeatable
- **Reversible**

Terfenol-D

- Discovered at Naval Ordnance Laboratory
- ♣ Tb-Dy-Fe alloy
- **→** 1000 1700 ppm

Terbium-Dysprosium

- Highest known magnetostriction: 6300 ppm @ 77 K
- **♣** T_c: 150-180 K
- ♣ Ductile material
- Fatigue is a problem
- Difficult to grow as signal crystal

Fabrication Techniques

♣ Polycrystalline TbDy

- > Ellis, Savage (Ames Lab)
- > Fultz, Dooley, Chave (CalTech, JPL)

Results

- Stronger material
- Reduced magnetostriction

Terbium-Dysprosium-Zinc

- **♣** T_c: 150 K
- Not as ductile as TbDy
- Orientation is critical
- ♣ Easier to fabricate
 - > Bridgman
 - Oriented growth

KelvinAll®

- Comparable to Terfenol-D at room temperature
- Improved capability at cryogenic temperatures
- **Low cost**

KelvinAll®	0 - 400 K	\$1.2X
TbDyZn	< 150 K	\$5-7X
Terfenol	> 250 K	\$X

Devices

- ♣ Linear Actuators
 - Sub-micron positioning resolution
 - High force capability
- **♣** Linear Stepper Motors
 - Long range motion
 - Holds position without power
- ♣ Controls & Software
 - Manual
 - Automated

Applications

- Active controls for particle accelerators
 - Improves control and reliability
 - Reduces capital costs
- Heat switch for low temperature refrigerator
 - Reduces weight
 - Improves efficiency and reliability
- Metering valve
 - Helium bypass
 - Refrigeration control
 - Variable J-T valve
- Active vibration controls for laser weapons
 - Improves platform stability
 - Increases "hit" rate

Patent Pending

Conclusions

- Electromagnetic devices can be adapted for use at cryogenic temperatures
- Smart materials technology is being developed for cryogenic applications

Energen, Inc.

650 Suffolk Street Lowell, MA 01854

(978) 259-0100

www.EnergenInc.com

Contact: Chad Joshi (joshi@EnergenInc.com)

Thanks to Adpatronics, Etrema Products, TRS Ceramics, American Superconductor, Empire Magnetics, BEI Kimco, Stirling Technologies for providing data